Acta Cryst. (1997). C53, 452-453

μ-Acetato- $O: \boldsymbol{O}^{\prime}$ - $\boldsymbol{\mu}$-oxo-bis $\{$ [tris(2-pyridyl-methyl)amine- $\left.N, N^{\prime}, N^{\prime \prime}, N^{\prime \prime \prime}\right]$ iron(III) $\}$ Tris(trifluoromethanesulfonate) Dihydrate

Richard E. Norman, ${ }^{a}$ Norman L. Peterson ${ }^{a}$ and Shir-Chi Chang ${ }^{b}$
${ }^{a}$ Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, USA, and ${ }^{b}$ Department of Physics, Duquesne University, Pittsburgh, PA 15282, USA. E-mail: chnorman@alpha.nlu.edu

(Received 21 March 1996; accepted 3 December 1996)

Abstract

The title compound, $\left[\mathrm{Fe}_{2} \mathrm{O}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)\left(\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4}\right)_{2}\right]\left(\mathrm{CF}_{3}-\right.$ $\left.\mathrm{O}_{3} \mathrm{~S}\right)_{3} .2 \mathrm{H}_{2} \mathrm{O}$, was isolated from a reaction designed to produce the sulfido-bridged analog. The metrical parameters for this complex are typical of μ-oxo- μ -carboxylato-diiron(III) complexes.

Comment

As the result of an attempt to synthesize a new class of diiron(III) complexes with a μ-sulfido- μ-carboxylatodiiron(III) core, the title complex, (I), was prepared and structurally characterized. Since the replacement of a μ oxo ligand by a μ-sulfido ligand has been little studied (Mukherjee, Stack \& Holm, 1988), we were not entirely sure what spectroscopic changes would accompany this replacement. To determine whether we had synthesized the desired sulfido-bridged species or the oxo-bridged species, we determined the structure.

The structures and spectral properties of several μ -oxo- μ-carboxylato-diiron(III) complexes with the TPA ligand [TPA is tris(2-pyridylmethyl)amine] have been previously reported (Norman, Yan, Que, Backes, Ling, Sanders-Loehr, Zhang \& O'Connor, 1990; Norman, Holz, Ménage, O’Connor, Zhang \& Que, 1990), including an acetate form, $\left[\mathrm{Fe}_{2}(\mathrm{TPA})_{2} \mathrm{O}(\mathrm{OAc})\right]\left(\mathrm{ClO}_{4}\right)_{3}$.$\mathrm{CH}_{3} \mathrm{COCH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$. With μ-1,3-carboxylates, these diiron(III) complexes always have inequivalent iron sites
and distinctly asymmetric oxo bridges, as does the title compound. The metrical parameters of the current complex are similar to those previously reported (typically falling within 3σ) and show the same patterns, i.e. lengthening of bonds trans to the oxo bridge, asymmetry of the coordination of the carboxylate, etc. The separation of the two $\mathrm{Fe}^{\mathrm{III}}$ atoms is 3.271 (1) \AA.

Fig. 1. Perspective drawing of the $\left[\mathrm{Fe}_{2}(\mathrm{TPA})_{2} \mathrm{O}(\mathrm{OAc})\right]^{3+}$ cation with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted.

Experimental

For the preparation of the title complex, tris[(2-pyridinium)methyl]amine perchlorate ($0.5917 \mathrm{~g}, 1.00 \mathrm{mmol}$) and triethylamine ($0.630 \mathrm{ml}, 4.50 \mathrm{mmol}$) were dissolved in 40 ml MeOH . $\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{3} .10 \mathrm{H}_{2} \mathrm{O}(0.5366 \mathrm{~g}, 1.00 \mathrm{mmol})$ was dissolved in $1-2 \mathrm{ml} \mathrm{MeOH}$ and this solution was added to the ligand solution. Anhydrous sodium acetate ($0.0410 \mathrm{~g}, 0.500 \mathrm{mmol}$) was added, giving a brown-green solution. $\mathrm{Na}_{2} \mathrm{~S} .9 \mathrm{H}_{2} \mathrm{O}(0.1318 \mathrm{~g}$, 0.549 mmol) was subsequently added giving a dark green solution. After several days, a green precipitate was noted. This precipitate was metathesized with excess $\mathrm{K}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$ yielding green crystals, one of which was selected for structure determination.

Crystal data

$\left[\mathrm{Fe}_{2} \mathrm{O}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)\left(\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4}\right)_{2}\right]$ $\left(\mathrm{CF}_{3} \mathrm{O}_{3} \mathrm{~S}\right)_{3} .2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1250.71$
Triclinic
$P \overline{1}$
$a=13.576$ (4) \AA
$b=17.947$ (3) \AA
$c=12.262(3) \AA$
$\alpha=105.11(2)^{\circ}$
$\beta=114.19(2)^{\circ}$
$\gamma=83.55(2)^{\circ}$
$V=2630.9(11) \AA^{3}$
$Z=2$
$D_{x}=1.579 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 25 reflections
$\theta=12.28-14.82^{\circ}$
$\mu=0.772 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism
$0.75 \times 0.20 \times 0.15 \mathrm{~mm}$
Green

Data collection

Rigaku AFC-7R diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan (Molecular Structure Corporation, 1985, 1992)
$T_{\text {min }}=0.83, T_{\text {max }}=0.89$
9508 measured reflections
9300 independent reflections

5467 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.0245$
$\theta_{\text {max }}=25.02^{\circ}$
$h=0 \rightarrow 16$
$k=-21 \rightarrow 21$
$l=-14 \rightarrow 12$
3 standard reflections every 150 reflections intensity decay: 4.09%

Refinement

Refinement on F^{2}
$R(F)=0.0545$
$w R\left(F^{2}\right)=0.1653$
$S=1.048$
9300 reflections
604 parameters
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.519 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.391$ e \AA^{-3}
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)

Subsequent refinement then converged with slightly lower R factors than when the trifluoromethanesulfonate ion was modeled with either a rigid model or when the atoms were allowed to move from chemically reasonable positions. There were no signifcant changes in the geometry of the diiron cation.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1985, 1992). Program(s) used to solve structure: SIR92 (Altomare et al., 1994). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993).

Financial support from the Kresge Foundation is gratefully acknowledged.

Lists of atomic coordinates, displacement parameters, structure factors and complete geometry have been deposited with the IUCr (Reference: FGl185). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Altomare, A., Cascarano, M., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435436.

Molecular Structure Corporation (1985, 1992). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Mukherjee, R. N., Stack, T. D. P. \& Holm, R. H. (1988). J. Am. Chem. Soc. 110, 1850-1861.
Norman, R. E., Holz, R. C., Ménage, S., O'Connor, C. J., Zhang, J. H. \& Que, L. Jr (1990). Inorg. Chem. 29, 4629-4637.
Norman, R. E., Yan, S., Que, L. Jr, Backes, G., Ling, J., SandersLoehr, J., Zhang, J. H. \& O’Connor, C. J. (1990). J. Am. Chem. Soc. 112, 1554-1562.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Spek, A. L. (1994). Am. Crystallogr. Assoc. Meet. Abstracts, Paper M05.
Spek, A. L. (1995). PLATON95. Molecular Geometry Program. Version of July 1995. University of Utrecht, The Netherlands.

